Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.280
1.
Biochem Biophys Res Commun ; 714: 149959, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38657443

Gestational diabetes mellitus (GDM) presents a substantial population health concern. Previous studies have revealed that GDM can ultimately influence nephron endowment. In this study, we established a GDM mouse model to investigate the embryological alterations and molecular mechanisms underlying the development of congenital anomalies of the kidney and urinary tract (CAKUT) affected by GDM. Our study highlights that GDM could contribute to the manifestation of CAKUT, with prevalent phenotypes characterized by isolated hydronephrosis and duplex kidney complicated with hydronephrosis in mice. Ectopic ureteric buds (UBs) and extended length of common nephric ducts (CNDs) were noted in the metanephric development stage. The expression of Ret and downstream p-ERK activity were enhanced in UBs, which indicated the alteration of RET/MAPK/ERK pathway may be one of the mechanisms contributing to the increased occurrence of CAKUT associated with GDM.


Diabetes, Gestational , MAP Kinase Signaling System , Proto-Oncogene Proteins c-ret , Urogenital Abnormalities , Vesico-Ureteral Reflux , Animals , Female , Mice , Pregnancy , Diabetes, Gestational/metabolism , Kidney/abnormalities , Kidney/metabolism , Kidney/embryology , Proto-Oncogene Proteins c-ret/metabolism , Proto-Oncogene Proteins c-ret/genetics , Urinary Tract/abnormalities , Urinary Tract/embryology , Urogenital Abnormalities/etiology , Urogenital Abnormalities/genetics , Urogenital Abnormalities/pathology
3.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Article En | MEDLINE | ID: mdl-38355799

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Animals, Newborn , Embryo, Mammalian , Embryonic Development , Gastrula , Single-Cell Analysis , Time-Lapse Imaging , Animals , Female , Mice , Pregnancy , Animals, Newborn/embryology , Animals, Newborn/genetics , Cell Differentiation/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryonic Development/genetics , Gastrula/cytology , Gastrula/embryology , Gastrulation/genetics , Kidney/cytology , Kidney/embryology , Mesoderm/cytology , Mesoderm/enzymology , Neurons/cytology , Neurons/metabolism , Retina/cytology , Retina/embryology , Somites/cytology , Somites/embryology , Time Factors , Transcription Factors/genetics , Transcription, Genetic , Organ Specificity/genetics
4.
J Vet Med Sci ; 86(3): 300-307, 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38267037

We previously showed that the anti-Müllerian hormone (AMH), infiltrating from the testis to the mesonephros reaches the cranial and middle regions of the Müllerian duct (MD) and induces their regression using an organ culture in mice. However, it is difficult to maintain structural integrity, such as the length and diameter and normal direction of elongation of the caudal region of the MD, in conventional organ culture systems. Therefore, the pathway of AMH to the caudal MD region remains uncharted. In this study, we established an organ culture method that can maintain the morphology of the caudal region of the MD. The gonad-mesonephros complex, metanephros, and urinary bladder of mouse fetuses at 12.5 dpc attached to the body trunk were cultured on agarose gels for 72 hr. The cultured caudal region of the mesonephros was elongated along the body trunk, and the course of the mesonephros was maintained in many individuals. In males, mesenchymal cells aggregated around the MD after culture. Moreover, the male MD diameter was significantly smaller than the female. Based on these results, it was concluded that the development of the MD was maintained in the present organ culture system. Using this culture system, AMH infiltration to the caudal region of the MD can be examined without the influence of AMH in the blood. This culture system is useful for clarifying the regression mechanism of the caudal region of the MD.


Anti-Mullerian Hormone , Embryonic Structures , Kidney/embryology , Mullerian Ducts , Mice , Male , Female , Animals , Organ Culture Techniques/veterinary , Anti-Mullerian Hormone/metabolism , Testis/metabolism
5.
Curr Opin Cell Biol ; 86: 102306, 2024 Feb.
Article En | MEDLINE | ID: mdl-38194750

During embryogenesis, the mammalian kidney arises because of reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (MM), driving UB branching and nephron induction. These morphogenetic processes involve a series of cellular rearrangements that are tightly controlled by gene regulatory networks and signaling cascades. Here, we discuss how kidney developmental studies have informed the definition of procedures to obtain kidney organoids from human pluripotent stem cells (hPSCs). Moreover, bioengineering techniques have emerged as potential solutions to externally impose controlled microenvironments for organoid generation from hPSCs. Next, we summarize some of these advances with major focus On recent works merging hPSC-derived kidney organoids (hPSC-kidney organoids) with organ-on-chip to develop robust models for drug discovery and disease modeling applications. We foresee that, in the near future, coupling of different organoid models through bioengineering approaches will help advancing to recreate organ-to-organ crosstalk to increase our understanding on kidney disease progression in the human context and search for new therapeutics.


Embryonic Structures , Kidney , Nephrons , Pluripotent Stem Cells , Humans , Cell Differentiation/physiology , Kidney/physiology , Kidney/embryology , Nephrons/embryology , Organoids
6.
Anat Histol Embryol ; 53(1): e12985, 2024 Jan.
Article En | MEDLINE | ID: mdl-37814965

The development of the metanephros in one-humped camels involves a complex series of interactions between epithelial and mesenchymal cells. As a result, there is a synchronized differentiation process of stromal, vascular and epithelial cell types during glomerulogenesis, angiogenesis and tubulogenesis. In the current work, the metanephros of camel foetuses were divided into four stages where kidneys from each stage were processed and immunoassayed, followed by quantitative analysis to determine target protein intensities throughout metanephrogenesis in the camel. This study demonstrated robust expression of α-smooth muscle actin (α-SMA) in the glomerular mesangium, as well as in interlobular and glomerular arterioles during the earlier stages of development. However, in the late stages, α-SMA expression became more localized around the blood capillaries in both the cortex and medulla. Strong expression of CD34 was observed in the immature glomerular and peritubular endothelial cells within the subcapsular zone, as well as in the glomerular, proximal tubular and distal tubular epithelium of stage one foetuses, although its expression gradually diminished with foetal maturation. The expression pattern of osteopontin was prominently observed in the distal convoluted tubules throughout all stages, however, no expression was detected in the proximal tubules, glomeruli and arterioles. E-cadherin was detected in the developing renal tubular epithelial cells but not in the glomeruli. In conclusion, this study reveals the spatiotemporal distribution of key proteins, including α-SMA, CD34, Osteopontin and E-cadherin, which play a crucial role in metanephrogenesis in camel foetuses.


Camelus , Embryonic Structures , Kidney/embryology , Osteopontin , Animals , Osteopontin/metabolism , Endothelial Cells , Fetus , Actins/metabolism , Cadherins/metabolism , Muscle, Smooth
7.
Kidney Int ; 105(4): 844-864, 2024 Apr.
Article En | MEDLINE | ID: mdl-38154558

Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.


Embryonic Structures , Forkhead Transcription Factors , Kidney Diseases , Kidney , Nephrons , Urinary Tract , Urogenital Abnormalities , Vesico-Ureteral Reflux , Adult , Animals , Humans , Mice , Genome-Wide Association Study , Kidney/abnormalities , Kidney/embryology , Kidney Diseases/genetics , Mice, Knockout , Nephrons/embryology , Transcription Factors/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/metabolism
8.
J Nepal Health Res Counc ; 20(4): 958-961, 2023 Jul 20.
Article En | MEDLINE | ID: mdl-37489684

BACKGROUND: To establish a nomogram of fetal kidney length for a normal pregnancy from 20 to 41 weeks of gestational age. METHODS: A prospective cross-sectional study was carried out in the Department of radio-diagnosis and imaging BPKIHS, Dharan. 400 kidneys of 200 fetuses between the gestational age 20 to 41 weeks were scanned. Renal measurement was performed by ultrasonography. RESULTS: Analysis was performed on data obtained from 200 normal fetuses. Size charts for right, left and mean fetal kidney length with standard deviation were presented for each weeks of gestation from 20 weeks to 41 weeks. The difference in renal length between right and left side was statistically not significant.There was significant correlation between gestational age and fetal kidney length (r=0.947, p=0.001). CONCLUSIONS: Fetal kidney length can be used as an adjunct parameter for estimation of gestation age.


Kidney , Ultrasonography , Kidney/embryology , Gestational Age , Female , Pregnancy , Humans , Prospective Studies , Fetus
9.
Matrix Biol ; 115: 139-159, 2023 01.
Article En | MEDLINE | ID: mdl-36623578

Collagen XVIII (ColXVIII) is a component of the extracellular matrix implicated in embryogenesis and control of tissue homoeostasis. We now provide evidence that ColXVIII has a specific role in renal branching morphogenesis as observed in analyses of total and isoform-specific knockout embryos and mice. The expression of the short and the two longer isoforms differ temporally and spatially during renal development. The lack of ColXVIII or its specific isoforms lead to congenital defects in the 3D patterning of the ureteric tree where the short isoform plays a prominent role. Moreover, the ex vivo data suggests that ColXVIII is involved in the kidney epithelial tree patterning via its N-terminal domains, and especially the Thrombospondin-1-like domain common to all isoforms. This morphogenetic function likely involves integrins expressed in the ureteric epithelium. Altogether, the results point to an important role for ColXVIII in the matrix-integrin-mediated functions regulating renal development.


Collagen Type XVIII , Kidney , Protein Isoforms , Animals , Mice , Collagen Type XVIII/genetics , Collagen Type XVIII/metabolism , Integrins , Kidney/embryology , Kidney/metabolism , Morphogenesis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Ureter/embryology , Ureter/metabolism
10.
Kidney Int ; 103(1): 77-86, 2023 01.
Article En | MEDLINE | ID: mdl-36055600

The kidney is an essential organ that ensures bodily fluid homeostasis and removes soluble waste products from the organism. Nephrons, the functional units of the kidney, comprise a blood filter, the glomerulus or glomus, and an epithelial tubule that processes the filtrate from the blood or coelom and selectively reabsorbs solutes, such as sugars, proteins, ions, and water, leaving waste products to be eliminated in the urine. Genes coding for transporters are segmentally expressed, enabling the nephron to sequentially process the filtrate. The Xenopus embryonic kidney, the pronephros, which consists of a single large nephron, has served as a valuable model to identify genes involved in nephron formation and patterning. Therefore, the developmental patterning program that generates these segments is of great interest. Prior work has defined the gene expression profiles of Xenopus nephron segments via in situ hybridization strategies, but a comprehensive understanding of the cellular makeup of the pronephric kidney remains incomplete. Here, we carried out single-cell mRNA sequencing of the functional Xenopus pronephric nephron and evaluated its cellular composition through comparative analyses with previous Xenopus studies and single-cell mRNA sequencing of the adult mouse kidney. This study reconstructs the cellular makeup of the pronephric kidney and identifies conserved cells, segments, and associated gene expression profiles. Thus, our data highlight significant conservation in podocytes, proximal and distal tubule cells, and divergence in cellular composition underlying the capacity of each nephron to remove wastes in the form of urine, while emphasizing the Xenopus pronephros as a model for physiology and disease.


Kidney , Nephrons , Animals , Mice , Gene Expression Regulation, Developmental , Kidney/embryology , Kidney Glomerulus/embryology , Nephrons/embryology , RNA, Messenger/genetics , Xenopus laevis/embryology
11.
Eur Rev Med Pharmacol Sci ; 26(9): 3301-3309, 2022 05.
Article En | MEDLINE | ID: mdl-35587082

OBJECTIVE: Acyl-CoA-binding protein (ACBP), also known as diazepam binding inhibitor (DBI), is a small phylogenetically conserved protein. This ancestral peptide is multifunctional, performing intracellular activities as ACBP protein or extracellular roles as DBI. Several studies showed its endless facets, including a relevant activity as appetite stimulator and as anabolic factor. High levels of ACBP have been described in erythrocytes, liver, kidney, and gut cells. The aim of this study was to analyze, at immunohistochemical level, the expression of ACBP in fetal human tissues during development, focusing on the developing kidney. MATERIALS AND METHODS: Immunohistochemistry for ACBP was performed on 30 human fetal kidneys, from 15 fetuses of gestational age ranging from 13 to 19 weeks. At autopsy, all kidney samples were 10% formalin-fixed, routinely processed and paraffin-embedded. Five micron-thick paraffin sections were stained with Hematoxylin and Eosin and PAS stain for a morphological examination. RESULTS: ACBP was detected in all 30 kidneys analyzed in this study. No significant changes in ACBP expression were observed at different gestational ages. Immunostaining for ACBP was restricted to the epithelium covering the renal pelvis, the papillae, the collecting tubules, and the proximal and distal tubules. On the other hand, medullary regions and in the metanephric mesenchymal stem/progenitor cells did not show any reactivity for ACBP. CONCLUSIONS: According to our findings, ACBP should be considered as a new player in the complex field of human nephrogenesis, given that it was detected in all fetal kidneys immunostained. Its preferential localization in the renal structures derived from the Wolf duct, such as pelvis epithelium and collecting ducts, suggests a major role for ACBP in the induction of the metanephric mesenchymal cells toward the differentiation into glomerular structures. ACBP expression in proximal and distal tubules, two structures originating from the metanephric mesenchyme, indicates a further role of this protein in nephron development. In conclusion, ACBP should be added to the multiple molecules involved in human nephrogenesis.


Diazepam Binding Inhibitor , Kidney , Coenzyme A/metabolism , Humans , Kidney/embryology , Kidney/metabolism
12.
Kidney Int ; 102(1): 108-120, 2022 07.
Article En | MEDLINE | ID: mdl-35341793

Oxidative metabolism in mitochondria regulates cellular differentiation and gene expression through intermediary metabolites and reactive oxygen species. Its role in kidney development and pathogenesis is not completely understood. Here we inactivated ubiquinone-binding protein QPC, a subunit of mitochondrial complex III, in two types of kidney progenitor cells to investigate the role of mitochondrial electron transport in kidney homeostasis. Inactivation of QPC in sine oculis-related homeobox 2 (SIX2)-expressing cap mesenchyme progenitors, which give rise to podocytes and all nephron segments except collecting ducts, resulted in perinatal death from severe kidney dysplasia. This was characterized by decreased proliferation of SIX2 progenitors and their failure to differentiate into kidney epithelium. QPC inactivation in cap mesenchyme progenitors induced activating transcription factor 4-mediated nutritional stress responses and was associated with a reduction in kidney tricarboxylic acid cycle metabolites and amino acid levels, which negatively impacted purine and pyrimidine synthesis. In contrast, QPC inactivation in ureteric tree epithelial cells, which give rise to the kidney collecting system, did not inhibit ureteric differentiation, and resulted in the development of functional kidneys that were smaller in size. Thus, our data demonstrate that mitochondrial oxidative metabolism is critical for the formation of cap mesenchyme-derived nephron segments but dispensable for formation of the kidney collecting system. Hence, our studies reveal compartment-specific needs for metabolic reprogramming during kidney development.


Electron Transport Complex III , Kidney , Nephrons , Organogenesis , Podocytes , Amino Acids/deficiency , Cell Differentiation , Electron Transport Complex III/metabolism , Female , Humans , Kidney/embryology , Kidney/metabolism , Mesoderm/metabolism , Nephrons/metabolism , Organogenesis/genetics , Podocytes/metabolism , Pregnancy , Ureter/embryology
13.
Biochem Biophys Res Commun ; 589: 173-179, 2022 01 22.
Article En | MEDLINE | ID: mdl-34922199

Congenital anomalies of the kidney and urinary tract (CAKUT) are a family of often-concurrent diseases with various anatomical spectra. Null-mutant Gen1 mice frequently develop multiple urinary phenotypes, most commonly duplex kidneys, and are ideal subjects for research on ectopic budding in CAKUT development. The upper and lower kidney poles of the Gen1PB/PB mouse were examined by histology, immunofluorescence, and immunohistochemistry. The newborn Gen1PB/PB mouse lower poles were significantly more hypoplastic than the corresponding upper poles, with significantly fewer glomeruli. On embryonic day 14.5, immediately before first urine formation, the upper pole kidney was already larger than the lower pole kidney. In vivo and in vitro, embryonic kidney upper poles had more ureteric buds than lower poles. Gen1PB/PB embryos exhibited ectopic ureteric buds, usually near the original budding site, occasionally far away, or, rarely, derived from the primary budding site. Therefore, ectopia of the ureteric buds is the core of CAKUT formation. Further studies will be needed to investigate the regulatory roles of these genes in initial ureteric budding and subsequent ontogenesis during metanephros development.


Holliday Junction Resolvases/metabolism , Kidney/abnormalities , Kidney/embryology , Animals , Animals, Newborn , Biomarkers/metabolism , Cell Differentiation , Embryo, Mammalian/pathology , Mice , Ureter/abnormalities , Ureter/embryology
14.
Cells ; 10(12)2021 11 30.
Article En | MEDLINE | ID: mdl-34943879

Growth hormone (GH) exerts multiple effects on different organs including the kidneys, either directly or via its main mediator, insulin-like-growth factor-1 (IGF-1). The GH/IGF1 system plays a key role in normal kidney development, glomerular hemodynamic regulation, as well as tubular water, sodium, phosphate, and calcium handling. Transgenic animal models demonstrated that GH excess (and not IGF1) may lead to hyperfiltration, albuminuria, and glomerulosclerosis. GH and IGF-1 play a significant role in the early development of diabetic nephropathy, as well as in compensatory kidney hypertrophy after unilateral nephrectomy. Chronic kidney disease (CKD) and its complications in children are associated with alterations in the GH/IGF1 axis, including growth retardation, related to a GH-resistant state, attributed to impaired kidney postreceptor GH-signaling and chronic inflammation. This may explain the safety of prolonged rhGH-treatment of short stature in CKD.


Growth Hormone/metabolism , Insulin-Like Growth Factor I/metabolism , Kidney/embryology , Kidney/metabolism , Animals , Animals, Genetically Modified , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Models, Biological
15.
Sci Rep ; 11(1): 21667, 2021 11 04.
Article En | MEDLINE | ID: mdl-34737344

Preterm birth is a leading cause of neonatal morbidity. Survivors have a greater risk for kidney dysfunction and hypertension. Little is known about the molecular changes that occur in the kidney of individuals born preterm. Here, we demonstrate that mice delivered two days prior to full term gestation undergo premature cessation of nephrogenesis, resulting in a lower glomerular density. Kidneys from preterm and term groups exhibited differences in gene expression profiles at 20- and 27-days post-conception, including significant differences in the expression of fat-soluble vitamin-related genes. Kidneys of the preterm mice exhibited decreased proportions of endothelial cells and a lower expression of genes promoting angiogenesis compared to the term group. Kidneys from the preterm mice also had altered nephron progenitor subpopulations, early Six2 depletion, and altered Jag1 expression in the nephrogenic zone, consistent with premature differentiation of nephron progenitor cells. In conclusion, preterm birth alone was sufficient to shorten the duration of nephrogenesis and cause premature differentiation of nephron progenitor cells. These candidate genes and pathways may provide targets to improve kidney health in preterm infants.


Cell Differentiation/physiology , Nephrons/embryology , Premature Birth/metabolism , Animals , Endothelial Cells/metabolism , Female , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Kidney/embryology , Kidney/metabolism , Kidney Glomerulus/embryology , Kidney Glomerulus/metabolism , Male , Mice , Models, Animal , Morphogenesis , Nephrons/metabolism , Organogenesis/genetics , Pregnancy , Stem Cells/metabolism , Stem Cells/physiology , Transcription Factors/metabolism
16.
Front Endocrinol (Lausanne) ; 12: 745716, 2021.
Article En | MEDLINE | ID: mdl-34721300

Chronic kidney disease (CKD) and hypertension are becoming a global health challenge, despite developments in pharmacotherapy. Both diseases can begin in early life by so-called "developmental origins of health and disease" (DOHaD). Environmental chemical exposure during pregnancy can affect kidney development, resulting in renal programming. Here, we focus on environmental chemicals that pregnant mothers are likely to be exposed, including dioxins, bisphenol A (BPA), phthalates, per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAH), heavy metals, and air pollution. We summarize current human evidence and animal models that supports the link between prenatal exposure to environmental chemicals and developmental origins of kidney disease and hypertension, with an emphasis on common mechanisms. These include oxidative stress, renin-angiotensin system, reduced nephron numbers, and aryl hydrocarbon receptor signaling pathway. Urgent action is required to identify toxic chemicals in the environment, avoid harmful chemicals exposure during pregnancy and lactation, and continue to discover other potentially harmful chemicals. Innovation is also needed to identify kidney disease and hypertension in the earliest stage, as well as translating effective reprogramming interventions from animal studies into clinical practice. Toward DOHaD approach, prohibiting toxic chemical exposure and better understanding of underlying mechanisms, we have the potential to reduce global burden of kidney disease and hypertension.


Environmental Pollutants/toxicity , Hypertension/chemically induced , Renal Insufficiency, Chronic/chemically induced , Animals , Endocrine Disruptors/toxicity , Humans , Hypertension/pathology , Kidney/drug effects , Kidney/embryology , Kidney/pathology , Oxidative Stress/drug effects , Renal Insufficiency, Chronic/pathology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Signal Transduction/drug effects
17.
Commun Biol ; 4(1): 1158, 2021 10 07.
Article En | MEDLINE | ID: mdl-34620987

The enpp ectonucleotidases regulate lipidic and purinergic signalling pathways by controlling the extracellular concentrations of purines and bioactive lipids. Although both pathways are key regulators of kidney physiology and linked to human renal pathologies, their roles during nephrogenesis remain poorly understood. We previously showed that the pronephros was a major site of enpp expression and now demonstrate an unsuspected role for the conserved vertebrate enpp4 protein during kidney formation in Xenopus. Enpp4 over-expression results in ectopic renal tissues and, on rare occasion, complete mini-duplication of the entire kidney. Enpp4 is required and sufficient for pronephric markers expression and regulates the expression of RA, Notch and Wnt pathway members. Enpp4 is a membrane protein that binds, without hydrolyzing, phosphatidylserine and its effects are mediated by the receptor s1pr5, although not via the generation of S1P. Finally, we propose a novel and non-catalytic mechanism by which lipidic signalling regulates nephrogenesis.


Body Patterning/genetics , Kidney/physiology , Phosphoric Diester Hydrolases/physiology , Signal Transduction , Xenopus Proteins/physiology , Xenopus laevis/genetics , Animals , Embryo, Nonmammalian/embryology , Embryonic Development , Gene Regulatory Networks , Kidney/embryology , Phosphoric Diester Hydrolases/genetics , Xenopus Proteins/genetics , Xenopus laevis/growth & development , Xenopus laevis/metabolism
18.
J Am Soc Nephrol ; 32(11): 2815-2833, 2021 11.
Article En | MEDLINE | ID: mdl-34716243

BACKGROUND: Eya1 is a critical regulator of nephron progenitor cell specification and interacts with Six2 to promote NPC self-renewal. Haploinsufficiency of these genes causes kidney hypoplasia. However, how the Eya1-centered network operates remains unknown. METHODS: We engineered a 2×HA-3×Flag-Eya1 knock-in mouse line and performed coimmunoprecipitation with anti-HA or -Flag to precipitate the multitagged-Eya1 and its associated proteins. Loss-of-function, transcriptome profiling, and genome-wide binding analyses for Eya1's interacting chromatin-remodeling ATPase Brg1 were carried out. We assayed the activity of the cis-regulatory elements co-occupied by Brg1/Six2 in vivo. RESULTS: Eya1 and Six2 interact with the Brg1-based SWI/SNF complex during kidney development. Knockout of Brg1 results in failure of metanephric mesenchyme formation and depletion of nephron progenitors, which has been linked to loss of Eya1 expression. Transcriptional profiling shows conspicuous downregulation of important regulators for nephrogenesis in Brg1-deficient cells, including Lin28, Pbx1, and Dchs1-Fat4 signaling, but upregulation of podocyte lineage, oncogenic, and cell death-inducing genes, many of which Brg1 targets. Genome-wide binding analysis identifies Brg1 occupancy to a distal enhancer of Eya1 that drives nephron progenitor-specific expression. We demonstrate that Brg1 enrichment to two distal intronic enhancers of Pbx1 and a proximal promoter region of Mycn requires Six2 activity and that these Brg1/Six2-bound enhancers govern nephron progenitor-specific expression in response to Six2 activity. CONCLUSIONS: Our results reveal an essential role for Brg1, its downstream pathways, and its interaction with Eya1-Six2 in mediating the fine balance among the self-renewal, differentiation, and survival of nephron progenitors.


Chromatin Assembly and Disassembly , DNA Helicases/physiology , Enhancer Elements, Genetic , Homeodomain Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nephrons/cytology , Nuclear Proteins/metabolism , Nuclear Proteins/physiology , Protein Tyrosine Phosphatases/metabolism , Stem Cells/cytology , Transcription Factors/metabolism , Transcription Factors/physiology , Animals , Base Sequence , Cell Differentiation , Cell Self Renewal , Chromatin Immunoprecipitation , Gene Knock-In Techniques , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kidney/embryology , Mesoderm/cytology , Mesoderm/metabolism , Mice , Multiprotein Complexes , Nuclear Proteins/genetics , Protein Interaction Mapping , Protein Tyrosine Phosphatases/genetics , Stem Cells/metabolism , Transcription Factors/genetics , Transcriptome
19.
Biochim Biophys Acta Gene Regul Mech ; 1864(11-12): 194764, 2021.
Article En | MEDLINE | ID: mdl-34508900

The homeoboxB9 (HOXB9) gene is necessary for specification of the anterior-posterior body axis during embryonic development and expressed in various types of cancer. Here we show that the Wilms tumor transcription factor WT1 regulates the HOXB9 gene in a bidirectional manner. Silencing of WT1 activates HOXB9 in Wt1 expressing renal cell adenocarcinoma-derived 786-0 cells, mesonephric M15 cells and ex vivo cultured murine embryonic kidneys. In contrast, HOXB9 expression in U2OS osteosarcoma and human embryonic kidney (HEK) 293 cells, which lack endogenous WT1, is enhanced by overexpression of WT1. Consistently, Hoxb9 promoter activity is stimulated by WT1 in transiently transfected U2OS and HEK293 cells, but inhibited in M15 cells with CRISPR/Cas9-mediated Wt1 deletion. Electrophoretic mobility shift assay and chromatin immunoprecipitation demonstrate binding of WT1 to the HOXB9 promoter in WT1-overexpressing U2OS cells and M15 cells. BASP1, a transcriptional co-repressor of WT1, is associated with the HOXB9 promoter in the chromatin of these cell lines. Co-transfection of U2OS and HEK293 cells with BASP1 plus WT1 prevents the stimulatory effect of WT1 on the HOXB9 promoter. Our findings identify HOXB9 as a novel downstream target gene of WT1. Depending on the endogenous expression of WT1, forced changes in WT1 can either stimulate or repress HOXB9, and the inhibitory effect of WT1 on transcription of HOXB9 involves BASP1. Consistent with inhibition of Hoxb9 expression by WT1, both transcripts are distributed in an almost non-overlapping pattern in embryonic mouse kidneys. Regulation of HOXB9 expression by WT1 might become relevant during kidney development and cancer progression.


Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , WT1 Proteins/metabolism , Animals , Cell Line, Tumor , Embryo, Mammalian , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HEK293 Cells , Humans , Kidney/embryology , Kidney/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mice , Organ Culture Techniques , Promoter Regions, Genetic , Transcriptional Activation , WT1 Proteins/genetics , Wilms Tumor/genetics , Wilms Tumor/pathology
20.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article En | MEDLINE | ID: mdl-34502088

We aimed to investigate the spatio-temporal expression of possible CAKUT candidate genes CRKL, AIFM3, and UBASH3A, as well as AIF and BCL2 during human kidney development. Human fetal kidney tissue was stained with antibodies and analyzed by fluorescence microscopy and RT-PCR. Quantification of positive cells was assessed by calculation of area percentage and counting cells in nephron structures. Results showed statistically significant differences in the temporal expression patterns of the examined markers, depending on the investigated developmental stage. Limited but strong expression of CRKL was seen in developing kidneys, with increasing expression up to the period where the majority of nephrons are formed. Results also lead us to conclude that AIFM3 and AIF are important for promoting cell survival, but only AIFM3 is considered a CAKUT candidate gene due to the lack of AIF in nephron developmental structures. Our findings imply great importance of AIFM3 in energy production in nephrogenesis and tubular maturation. UBASH3A raw scores showed greater immunoreactivity in developing structures than mature ones which would point to a meaningful role in nephrogenesis. The fact that mRNA and proteins of CRKL, UBASH3A, and AIFM3 were detected in all phases of kidney development implies their role as renal development control genes.


Adaptor Proteins, Signal Transducing/genetics , Kidney/metabolism , Mitochondrial Proteins/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Fetus/embryology , Fetus/metabolism , Gene Expression Regulation, Developmental , Humans , Infant , Infant, Newborn , Kidney/embryology , Kidney/growth & development , Mitochondrial Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
...